Refine Your Search

Search Results

Technical Paper

Visualization and Performance Analysis of Gasoline Homogeneous Charge Induced Ignition by Diesel

2005-04-11
2005-01-0136
In order to enhance the thermal efficiency of gasoline engines, a combustion mode namely Homogeneous Charge Induced Ignition (HCII) was introduced and examined in this paper. Port-injected gasoline was used as the main fuel and formed a homogeneous charge in the cylinder. Diesel was used as the pilot fuel, directly injected into the cylinder, and self-ignited and this induced the ignition of the premixed gasoline-air charge. The images of HCII combustion process were taken on an optical engine through a high-speed CMOS camera. The multi-point induced ignition phenomena were observed and the parameters like flame luminance, ignition delay and combustion duration were analyzed by image analysis. The result shows that as the gasoline/diesel ratio increases with a fixed low pilot amount, the ignition delay increases, the initial ignition area extends from the center towards the periphery of the combustion chamber, and the combustion velocity increased.
Technical Paper

Study of Injection Strategies of Two-stage Gasoline Direct Injection (TSGDI) Combustion System

2005-04-11
2005-01-0107
Gasoline Direct Injection (GDI) engines developed at nineties of the twentieth century can greatly improve the fuel economy. But the combustion chamber design and mixture control of the engines are very complex compared with Port Fuel Injection (PFI) gasoline engines. A two-stage gasoline direct injection (TSGDI) combustion system is developed and aimed to solve the problem of the complexity. Two-stage fuel injection and flexible injection timings are adopted as main means to form reasonable stratified mixture in the cylinder. A simple combustion chamber and helical intake port are designed to assist the mixture's stable combustion, which reduces the difficulties of the combustion system design. Systematical simulation and experimental studies of the effects of injection strategies such as different first,second injection timings and injection ratios, on the mixture formation processes and engine performanc are made in detail.
Technical Paper

Homogeneous Charge Combustion and Emissions of Ethanol Ignited by Pilot Diesel on Diesel Engines

2004-03-08
2004-01-0094
Homogeneous charge combustion and emissions of ethanol ignited by pilot diesel fuel were investigated on a two-cylinder diesel engine. The results show that emissions depend on loads and ethanol volume fraction. At low loads, ethanol has little effects on smoke. With the increase of ethanol, NOx decreases, but CO emissions increase. At high loads, smoke emissions reduce greatly with increasing ethanol, but NOx and total hydrocarbon (THC) emissions increase. With the increase of ethanol, ignition delays, combustion duration shortens. The maximum rates of heat release for the fuel containing 10 vol% ethanol (E10) and 30 vol% ethanol (E30) increase. Brake specific energy consumption (BSEC) of E10 and E30 is improved slightly only at full loads. Compared to smoke emissions obtained on the same engine using ethanol blended diesel fuels, the tendency of smoke reduction is similar to that of homogeneous charge combustion of ethanol at the same operating conditions.
Technical Paper

Numerical Simulation of HCCI Engine With Multi-Stage Gasoline Direct Injection Using 3D-CFD With Detailed Chemistry

2004-03-08
2004-01-0563
In this paper, the detailed chemical kinetics was implemented into the three-dimensional CFD code to study the combustion process in HCCI engines. An extended hydrocarbon oxidation reaction mechanism (89 species, 413 reactions) used for high octane fuel was constructed and then used to simulate the chemical process of the ignition, combustion and pollutant formation in HCCI conditions. The three-dimensional CFD / chemistry model (FIRE/CHEMKIN) was validated using the experimental data from a Rapid Compression Machine. The simulation results show good agreements with experiments. Finally, the improved multi-dimensional CFD code has been employed to simulate the intake, spray, combustion and pollution formation process of the gasoline direct injection HCCI engine with multi-stage injection strategy. The models account for intake flow structure, spray atomization, spray/wall interaction, droplet evaporation and gas phase chemistry in complex multi-dimensional geometries.
Technical Paper

Numerical Simulation of Mixture Formation and Combustion of Gasoline Engines With Multi-Stage Direct Injection Compression Ignition (DICI)

2003-03-03
2003-01-1091
Homogeneous Charge Compression Ignition (HCCI) combustion concept has advantages of high thermal efficiency and low emissions. However, how to control HCCI ignition timing is still a challenge in the application. This paper tries to control HCCI ignition timing using gasoline direct injection (DI) into cylinder to form a desired mixture of fuel and air. A homogeneous charge can be realized by advancing injection timing in intake stroke and a stratified charge can be obtained by retarding injection timing in compression stroke. Multi-stage injection strategy is used to control the mixture concentration distribution in the cylinder for HCCI combustion. A three-dimensional Computational Fluid Dynamics (CFD) code FIRE™ is employed to simulate the effects of single injection timing and multi-stage injection on mixture formation and combustion. Effects of mixture concentration and inlet temperature on HCCI ignition timing are also investigated in this paper.
Technical Paper

Analysis of Combustion Behavior During Cold-Start and Warm-Up Process of SI Gasoline Engine

2001-09-24
2001-01-3557
Experiment is carried out on an engine dynamometer bench for simulating the cold-start of port-injected gasoline engines. Based on the measured temperatures and HC emissions at the inlet and outlet of the catalytic converter as well as cylinder pressure, how to achieve minimum catalytic-converter-out HC emissions prior to catalyst light-off has been discussed. In this experiment, the cold-start period is divided into three stages referred to the opening of the throttle valve. Most of the HC are emitted in the first stage, i.e. from cranking to the opening of the throttle valve. Retarding of spark timing could cause incomplete combustion in the cylinder and lead to the oxidization of the unburned HC in the exhaust manifold, which results in reductions of tail-pipe HC emissions. Incomplete combustion could also occur when throttle valve is open by setting proper spark timing.
X